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NOTES ON AXIOMS FOR QUANTUM MECHANICS
by

M. D. MacLaren

PREFACE

This set of notes is an expansion of two lectures given at Argonne as
part of a continuing seminar on the foundations of quantum theory. In the
notes, we attempt to survey, from a mathematical point of view, the problem
of giving a precise and attractive set of axioms for nonrelativistic quantum
mechanics and to point out some possibilities for future research.

While this problem is not one of the central problems in physics, it
has been of interest since the 1930's, and in recent years quite a bit of
work has been done on the subject. At present, the problem is in no sense
solved, and which line of attack on it is most promising is not at all
clear. As a result, these notes are rather informal and contain certain
remarks that the author may well wish to retract at some future time. The
list of references is intended to give reasonably complete coverage of the
mathematical papers on the subject, and the author would appreciate being
notified of any omissions.

Drs. Joe Cook and Joe Moyal have kindly looked over the notes and
pointed out several errors. However, they are not responsible for any that
remain.

I. INTRODUCTION

Consider a pair of objects (0,S), where 0 is to represent the set of
observables of some physical system and S the set of states. Suppose that
we are dealing with the quantum mechanics of a system with a finite number
of degrees of freedom. Then the theory can be based on a complex separable
Hilbert space H. In this case, 0 is O(H), the set of all self-adjoint
operators on H, and S is S(H), the set of all nonnegative self-adjoint
operators with trace one. (Here we are including the mixed states in S5
For each element A in O(H) and F in S(H), we can define a probability
measure p on the real line by

u(E) = Trace [FXg(A)],

where E is a measurable set.* The physical interpretation of this is that
u(E) is the probability that a measurement of A in the state F will result
in a value in the set E. The expected value of A, if it exists, is just
Trace (FA).

*Here Xg is the characteristic function of the set E, and Xg(A) is the
corresponding operator constructed from A by means of the functional
calculus. If Ey is the spectral resolution of A,

Xg(a) = [pr dE,.



i

3 Fits E mpsaen r.io‘slﬁ
! TICh ; s £t 3 v 1SS :1""4 &1!““& £ 0

| . TS 3 g 1 1Y , s 03 SREsIss £

: 2 4 svlinsad at axlonsg w

-;' Ty ke &0 HaE- Sl
§

: ¥ ‘ 9 G e ig andi slidW

. } . ite lesredal Jo an
ool seod el

I8 on % ey WY all dakdw b g
=285 / i NG 4lvess 5 akilg

:: : T ' 2 3 * 39 i A4 2 jdzon ey 143
i 1 Y SeIA o2 A . nl soororsierile
i ¢ W

ined sol Sexll
beds § . $ i Atm LATOVSE - JU0 B

; ; s338{do o zisg & Fablesed)
SRgUGLE 2 3t mtzve Tanlewdy ason 30 asld
~ bty W A b T L} wigsose sd3 diiv_gntlssh
o - ' Tondl 343 nsdT | sobassl Yo
e b : ) : ) b i sirda 815 R soage

, i 1 1 J{RYE st € Gas i Niee

e . rifibie T ) ane Nossd didw :
! g 139 1tk % tins :"s‘Jallm
ve snil 18wy ad¥ | 3

J{ARS] sasaT



Now the above paragraph gives an axiomatization of the pair (0,S) that
is both precise and concise. However, two objections to the axiomatization
may be raised. First, in this form, the axioms do not suggest natural
generalizations; yet some generalization is no doubt needed to handle rela-
tivistic problems. Second, the axioms are quite "ad hoc." Much better
would be a larger set of simple axioms, each one representing some one
physical or mathematical principle. The subject of this set of notes is
the problem of finding such a set of axioms, and also of what one can say
about the pair (0,S) when it has some, but not all, of the properties of

[0H), S(H)1].

This general problem has attracted a fair amount of attention over the
years without any completely satisfactory results being produced. This may
be because the mathematical problems involved are very difficult; but it is
rather more likely that they are simply unfamiliar and outside the main
stream of mathematics. So that the reader may form his own judgment on
this, a list of references is included. It is hoped that this list will
give a fair picture of the mathematical literature on this subject, but no
guarantees on this are extended. No doubt there are also many papers in
the physics literature on this subject, but we have not attempted to survey
them. This may not be a serious omission, for what appears to be lacking
in this subject is not so much physical ideas as mathematical results.

To give some form to the notes, we will aim at presenting a set of
axioms, from which it can be deduced that (0,S) is [0(H), S(H)]. We attempt
to give exact statements of the important theorems, but proofs have been
omitted. They are either trivial or may be found in the literature. Pos-
sibilities for generalizations, alternate axiom schemes, results using only
a few axioms, etc., will be discussed as we go along. However, we make no
claim to complete coverage of known results.

The set of axioms that we do give derives primarily from the '"quantum
logic" approach first set forth by Birkhoff and von Neumann,! and lately
developed by Mackey.l0,11 However, there is some flavor of the "algebraic"
approach initiated by Jordan, developed by Jordan, von Neumann, and
Wigner,s,21 and lately emphasized by Segal.“‘:15 In fact, one thing we try
to do is relate the problems arising in the two approaches.

One point should be mentioned in passing. Nothing has been said about
any group acting on (0,S); yet that is an important part of physics. The
reason for this is that we simply do not see how the group affects the
representation of (0,8). However, it may well be that no satisfactory
axiomatization of the system (0,S) can be obtained without considering the
group that acts on it.

II. AXIOMS FOR QUANTUM LOGIC

In this section, following Mackey,11 we present five basic and rather
elementary axioms for the pair (0,8). A consequence of these axioms will
be that the study of (0,S) reduces to the study of (Q2,S*), where Q is the
set of observables taking on only the values zero and one, and S* is the
set of states looked at as acting only on Q.
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Axiom 1. Each element ¢eS is a function from O to the set of all Borel
probability measures on the real line.

For Ae0, ¢eS, and E a Borel set, we let ¢A(E) denote the measure of E.
As a suggestive notation, we may write Prob(AeE|¢) for ¢A(E). The physical
interpretation of Axiom 1 is just that ¢A(E) is the probability that a
measurement of A in the state ¢ will give a result in the set E. Thus
Axiom 1 is really just the definition of "state."

Axiom 2. If A and B are in 0, and ¢A(E) = ¢B(E) for all ¢ in S and all E,
then A = B. If ¢ and ¢ are in S, and ¢*(E) = YA(E) all A in 0, all E,
then ¢ = V.

Axiom 3. Let Ae0, and let f be a real-valued Borel measurable function on
the real line. Then there exists B in O such that ¢B(E) = ¢A[f L(E)] for
all ¢ in S and all measurable sets E.

Proposition 1. B is uniquely determined by A.

We will denote the observable B by f(A). The physical interpretation
of f(A) is just that one measures A, getting a result, say A, and then
computes f(A). It follows from Axiom 3 that there exists for each real A
a constant observable taking on only the value )A; and for convenience, we
will let A denote this observable. Also, for any observable A and measur-
able set E, we have the observable Q = (A) S LE st clear® that®Q ¥ s¥an
especially simple sort of observable, taﬁlng on only the values zero and
one. We call such an observable a question. The term proposition is also
used at times. The set of all questions Q in 0 will be denoted by Q.

Proposition 2. Q is a question if and only if Q2 = 1.

For an observable A and state ¢, let m,(A) denote the mean value of A
in the state ¢, if it exists. Obviously, m,(Q) exists for all questions Q.
The set of functions my, ¢ in S, mapping Q into the unit interval, will be
denoted by S*. The functions m in S* define a partial ordering on Q in an
obvious way; namely, Q; = Q, Zf and only <if m(Q;) = m(Qy) all m in S*.

Proposition 3. The relation = is a partial ordering on the set of all
questions.

Proposition 4. There exist questions zero and one such that m(0) = 0 and
m(1) = 1 all meS. Thus 0 = Q =1 all QeQ. (These are just the constant
observables zero and one, which exist by Axiom 3.)

Proposition 5. If Q is a question, then (1 - Q) is a question. (1 - Q
exists by Axiom 3.)

Let {Q } be any set of questions. The question P is said to be a
least upper bound for {Qa} if P = Q, for all o and if R = Q, for all o
implies R = P. The term greatest lower bound is defined analogously. We
write Q; U Q, and Q; N Q, for the least upper bound and greatest lower
bound, respectively, providing they exist. Now it is not necessarily true
that every set {Q,}, or even every pair {Q1,Q,}, has a least upper bound
or greatest lower bound. When every pair in a partially ordered set has
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both a greatest lower bound and least upper bound, the set is said to be a
lattice. With only the axioms given so far, Q need not be a lattice.
However, it does have some structure beyond the partial ordering.

Theorem 1. Write Q' =1 - Q for Q in Q. Then the mapping Q » Q' is an
orthocomplementation on the partially ordered set Q5 i.e.,

1) If Qq = Qy, then Q] = Q55
2) Q" =0
3) QUQ' and Q N Q' exist and equal one and zero, respectively.

The orthocomplementation leads to a notion of orthogonality which is
quite analogous to that in a Hilbert space. We say that two questions
Q; and Q, are orthogonal, and write Q1 Q,, if Q; = Q;.

Proposition 6. The orthogonality relation is symmetric.

The essential physical interpretation of orthogonality is that we
consider two orthogonal questions Q; and Q, to be simultaneously measurable.
That being the case, we naturally assume that there exist observables of
the form A1Q; + A2Qp, A; real numbers. Now we can give examples of mutually
orthogonal projections by the following construction. Let Xg denote the
characteristic function of the Borel set E, and let A be an observable.

Then Xg(A) is a question, and 1 - Xg(A) = Xgr1(A) (E' is the complement of E).
Thus, if E and F are disjoint sets, Xg(A) and Xp(A) are orthogonal questioms.
Moreover, if {E;j} is a countable family of disjoint sets and F=UEj, we
have m[Xfp(A)] = Zm[XEi(A)] for all m in S*. It is reasonable to say that

the question Xg(A) is the sum of the Xg. (A). With these considerations in
it

mind (and further discussion may be found in Mackey's articlel? or bookll),
we introduce:

Axiom 4. Let {Qj} be a pairwise orthogonal sequence of questions. Then
there exists a question P such that m(P) = Im(Qj) for all m in S*.

Theorem 2. (Kadison) If {Qs;} is a pairwise orthogonal set of questions
and R = Q4 for all j, then R = IQj. Thus 2Q; is the least upper bound to
the set {Qj}.

Theorem 3. If Q1 = Qp, then there exists a question P such that m(P) =
m(Qy) - m(Q;) for all m in S*. Moreover, P = Q] NQp, and Qu = P U Q.

Proof. This follows from Axiom 4 and Theorem 2. We set P =1 -
Q3 + Q1)-

An orthocomplemented partially ordered set such that Q = P implies
P=QU (Q" NP) is said to be weakly modular. Relatively orthocomplemented
would be another good term.

Now we are in a position to introduce, within the quantum logic frame-
work, the notions corresponding to observable and state. A question-valued
measure is a function E > Qg from the Borel measurable sets of the real
line to Q having the following properties:
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i) ENF = ¢ implies QeL Qf;
1) Ey NEjy=¢, 143, implies Que, = IQf,;
EEL) i =0RL S0 &y d=r s

A measure on the questions is a positive real-valued function m on Q such
that m(0) = 0, m(1) = 1, and m(ZQj) = Zm(Qj) for any orthogonal sequence
of questions {Qj}.

A question-valued measure Qf may be regarded as the quantum mechanical
generalization of a random variable. For each measure on the questions m,
the mapping E > m(Qf) is an ordinary probability measure. Thus a question-
valued measure is a whole family of probability measures, which can be
related in very complicated ways.

Every observable A in 0 has an associated question-valued measure
E +~ Xg(A), and is, in fact, completely determined by it, for we have
Prob(AeE|¢) = m¢[XE(A)] for all ¢ in S. Moreover, this last expression
depends only on the action of m on Q, that is, on the function my in S*.
We may summarize all this in the following proposition.

Proposition 7. The observable A is completely determined by its associated
question-valued measure E +~ Xg(A). The state ¢ is completely determined by
the function m¢:Q =2 m¢(Q), which is a measure on the questions.

Thus we see that the whole structure of 0 and S is almost determined
by Q and the measures on the questions m in S*. It would be completely
determined if we only knew which question-valued measures corresponded to
observables, i.e., which are of the form E - XE(A).+ The mathematician's
answer to this problem is easy; we introduce another axiom.

Axiom 5. For every question-valued measure, E > Q, there exists an
observable A in 0 such that Qg = Xg(A) for all measurable sets E.

With the introduction of this axiom, the study of (0,S) is reduced to
the study of the "quantum logic" (Q,S*). The essential features of such a
logic are these: the set Q is a weakly-modular, orthocomplemented,
partially-ordered set, in which every countable orthogonal subset of Q has
a least upper bound. The set S* is a family of measures on Q (the term
"measure" is defined here as we defined "measure on the questions' above)
large enough so that Q = Q, if and only if m(Q;) = m(Qy) for all m in S*.
The idea of looking at such a logic was first put forth, in a rather
different form, by Birkhoff and von Neumann.! The development here is from
pages 61-68 of Mackey.ll Quantum logics have also been studied recently by
Varadarajan!? and Pool.l3 Authors who have studied logics with the addi-
tional axiom that Q is a lattice are zierler,?? Piron,12 Emch and Piron, 3

and Gudder.’

Within the quantum logic framework we can introduce two familiar
concepts: simultaneous observables and the spectrum. It was mentioned

tNote that we have not assumed that every measure on the questions is in
S*. For the special pair [O(H), S(H)], this turns out to be the case, an
important theorem proved by Gleason.
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above that orthogonal questions were assumed to be simultaneously measurable
in the laboratory. Also this follows from Axiom 5, for then both questions
are functions of a single observable. The general definition of commuting
observables is based on this, and two questions Q and P are said to commute
if there exist orthogonal questions R, Rp, and R3 such that Q = R; + Ry,
and P = R} + R3. Two observables A and B commute if Xg(A) and Xp(B)

commute for all measurable E and F.

The spectrum of an observable A is physically just the set of ali
possible values that one may get for a measurement of A. This can be made
precise by letting the spectrum of an observable A be the closed set Sp(A)
which is the complement of the union of all open sets E such that
Prob(AeE|¢) = 0 for all ¢ in S.

From the spectrum, we can define bounds for observables. Let A be an
observable. The norm of A is ||A|| = sup |A|[AeSp(A)]. A is bounded if
A“ < », We also define lower and upper bounds for A:

|lall_ = inf Alresp(a)], llAlly = sup Alresp(a)].

Now one can spend quite a bit of time discussing these various concepts
without introducing any further axioms; but any significant development of
the theory appears impossible without more axioms. We should note that one
can formulate in this abstract setting, a noted theorem of von Neumann,
namely, that for a countable family of commuting observables {A,}, there
exists an observable B and measurable functions {fn} such that A, = fn(B)
for all n. Varadarajan almost proved this theorem in Ref. 19. However,
Pooll3 pointed out that a hidden assumption was made, namely, that if Q;,
Qy, and Q3 commute, then Q3 commutes with Q; + Q. Pool shows that this
does not necessarily hold and gives various equivalent and sufficient
conditions. In particular, he shows that the necessary condition does hold
if Q is a lattice.

IITI. THE ALGEBRAIC APPROACH

In this section, we briefly discuss an alternative approach to the
problem of finding axioms for quantum mechanics. This goes back to Jordan,
who considered the question, 'What algebraic operations are meaningful in
the set of observables?" Let A denote the set of all bounded observables,
which is the natural object of study in the algebraic approach. Jordan
noted that in A one has available a sum, A + B, multiplication by real
numbers, and also powers, i.e., A2, A3, etc. No product in the ordinary
sense exists in A, for the product of two self-adjoint operators is not in
general self-adjoint. However, the symmetric product A°B = E(AB + BA) is
in A, and, moreover, this may be defined using only sums and squares; i.e.,

AB = 3[(a + B)? - A2 - B?].

An algebra with this sort of product is now called a Jordan algebra.t

tStrictly speaking, a Jordan algebra is a nonassociative algebra in which
the following identity holds: (a%b)a = (ab)a2, where a2 = aa. The
algebra may be over any field, but only the field of real numbers dstof
physical interest.
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Jordan, von Neumann, and Wigner® worked out the theory of real Jordan
algebras having a finite linear basis and satisfying the condition that
a2 + b2 + ... = 0 implies a =b = ... = 0. It turns out that every such
algebra is the direct sum of irreducible algebras, and they classified all
the irreducible algebras. Apart from two exceptional cases, the irreducible
algebras are just the algebras of all n x n Hermitian matrices over the
real, complex, or quaternionic numbers. One exceptional case is the set of
algebras in which the maximal number of orthogonal idempotents is two. The
dimension of such an algebra is arbitrary, but they are easily described;
they appear to have no physical interest. The other exceptional case is an
algebra of 3 x 3 matrices whose elements are Cayley numbers.

Von Neumann?! started to extend the ideas and results of Ref. 8 to the
case in which the algebra does not have a finite linear basis. This, of
course, is the situation for the algebra of quantum mechanical observables.
Naturally, to replace the finiteness condition, it was necessary to intro-
duce certain topological assumptions. Unfortunately, the second part of
his paper was never published and did not appear in his files. About all
we can say at this time about the structure of infinite dimensional Jordan
algebras, is that there exists a remarkable variety of such algebras, even
restricting consideration to those which are algebras of self-adjoint
operators. A complete classification of infinite-dimensional Jordan
algebras, or even a significant characterization of those that are, say,
weakly-closed algebras on Hilbert space, must be very difficult to find.
However, it is not unreasonable to suppose that the ideas and methods of
Refs. 8 and 21 could be extended to give a characterization of the special
algebra of all bounded self-adjoint operators.

More recently, Segall%s15 has adopted a similar algebraic approach to
the foundations of quantum mechanics. He focuses attention on the set A of
bounded observables, and assumes that they form a complete normed vector
space over the real numbers. In addition, he supposes that there exists a
unit element one, and that for each observable A, and each positive integer
n, a bounded observable A" is defined in such a way that the normal rules
for calculation with polynomials of a single variable are satisfied.
Finally, he introduces three further postulates relating the norm and the
squaring operation:*

s1)  [[u2 - v2|| = Max( ], [[v2|l1;

s2) |jw?| = [[ull;

53) U2 is a continuous function of U.
From these postulates, he is able to prove several rather general results
about spectra and states. (For Segal, a state is a bounded positive linear
functional E such that E(1) = 1.)

We quote the following results from pages 6 and 7 of Ref. 14:

1. !There exists an ample supply of pure states, in the sense that

two observables having the same expectation values in all pure states must
be identical."

*We have omitted one postulate shown to be redundant by Sherman.!®
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10

2. "Any observable admits a closed set of spectral values, and the
expectation of the observable in any state is the average of these spectral
values with respect to a probability distribution on them canonically
determined by the state.'

3. ""The smallest closed system of observables (in the sense of the
phenomenological postulates) containing a given observable A is in 1-1
algebraic correspondence with the algebra of all continuous functions on
the spectrum of A."

4. "Any pure state of a physical system which is a subsystem of a
larger system can be realized in a pure state of the larger system.'

5. ""The bound of an observable A may be defined purely algebraically
as the least real mumber o such that I - A = B2 and oI + A = C2 for
suitable observables B and C."

These results were proved in Ref. 15, except for (4), for which the
additional assumption was made that the sum of squares was always a square.
However, that follows from the axioms (Sherman17).

To continue his development of quantum mechanics beyond these rather
general abstract results, Segal assumes that A is the set of all self-
adjoint elements in a C* algebra. This corresponds to the "ad hoc'" assump-
tion that 0 is O(H). Of course, what Segal is primarily interested in is
which particular C* algebras are suitable for quantum mechanics and the
further development of the theory from that point. On the other hand, the
problem we are discussing here is how to deduce from elementary axioms that
0 is O(H) or, more generally, that the bounded observables are the self-
adjoint elements in a C* algebra.

It is worth pointing out that there is a variety of A's satisfying
Segal's postulates but not coming from a C* algebra. Sherman!® and
Lowdenslager9 give whole familes of examples where the distributive law,
Ao(B + C) = A°B + A°C, does not hold for the Jordan product. Sherman also
shows that the exceptional Jordan algebra of 3 x 3 matrices of Cayley
numbers satisfies Segal's postulates. Finally, and perhaps most interesting,
there are weakly-closed Jordan algebras of self-adjoint operators on Hilbert
space which are not the set of self-adjoint operators in a C* algebra.

(See Topping.ls)

To summarize, the essential feature of the algebraic approach is the
assumption that the sum of bounded observables exists, but as we shall see,
this may also be applied in the quantum logic framework. The difficulties
in the algebraic approach are the lack of any physical reason for assuming
that the special product is distributive, and the absence of any representa-
tion theorems for infinite-dimensional Jordan algebras.

IV. THE LATTICE PROPERTY FOR QUANTUM LOGICS

In order to get any real development of the theory of quantum logics,
it seems necessary to know that Q is a lattice. Because Q is orthocomple-
mented, this will follow if every pair of questions P,Q has a greatest
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lower bound P | Q. This is often taken as an axiom, e.g., by Piron,12
Gudder,7 and Zierler.23 However, the question arises as to what physical
justification there is for such an axiom. The above authors skip over this
point, but Birkhoff has discussed it in Ref. 2. 1In order to give Birkhoff's
arguments for assuming the existence of greatest lower bounds, it will be
necessary to digress a bit and briefly describe his approach to quantum
logic. This is appropriate in any case, for it is the original approach

of Birkhoff and von Neumann.

In our presentation, questions are assumed to correspond directly to
measurements. For Birkhoff, on the other hand, a proposition is a pre-
diction with probability one about the result of an experiment. To connect
the two notions, we will use the notation Q to stand for the prediction
that a measurement of the question Q will give the result one with certainty.
The states ¢ for which Q is a true prediction are just those for which
m¢(Q) = 1. Note that in some states ¢, the result of measuring Q may be
one, but not with certainty. These are just the states for which _

0 <my(Q) < 1, and it is perhaps reasonable to say that in such states Q
is neither true nor false. Now there is a natural ordering of these pre-
dictions; namely, Q = P if and only if Q implies P, which means, in terms
of the questions Q and P, that for every state ¢ such that my(Q) = 1,
m¢(P) = 1 must hold. This ordering of implication is just that used to
order the propositions of classical logic, so that it is more reasonable
to call Q a proposition than it is to call Q one.

Now Birkhoff suggests defining P N Q as the prediction that measure-
ments of both P and Q are certain to give the result one. Because P and Q
do not in general commute, the concept of measuring both must be made
precise. One possibility is to measure P and then immediately afterwards
measure Q. Suppose we denote the prediction that both measurements are
one by PN 6, and the prediction for the measurements made in the reverse
order by Q N P. Then the question arises as to whether or not P n o =
Q N P. But this question can be tested experimentally! If the equality
PNQ=QNP can be experimentally verified, we have good reason for
making the existence of greatest lower bounds one of the properties of the
logic of predictions.

In discussion with the author, Birkhoff has also suggested another way
of looking at the prediction P N Q. In quantum mechanics, one always
assumes that experiments are reproducible, which implies the existence of
an unlimited supply of similar systems all in the same state ¢. Thas .o to
observe the result of measuring P and Q in the state ¢, it is not necessary
to make the measurements on the same system. We can measure P for one
system, then Q for a second, then P for a third, etc. As a result of this
process we get a picture of the distribution of the results of both P and Q
in the state ¢, without any interference between the different measurements.
The proposition P N Q is considered to be true for ¢ if all the measure-

ments give one.

Now the above arguments justify assuming the existence of greatest
lower bounds in the logic of predictions. Is this a justification for
assuming their existence in Q, the set of questions? This is a rather
tricky point, but the answer seems to be ""No." At least the definition of

Q N P does not yield what one would normally call an operational definition

!
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of QN P. One of the physical assumptions underlying our axioms is that for
each question Q, in fact for each observable, there is a corresponding ex-
perimental procedure or measurement process. This measurement can be
carried out on a single physical system; and, moreover, if the result of a
measurement of Q is one, then the system is supposed immediately after the
measurement to be in a state ¢ such that m¢(Q) = 1. But given measuring
procedures for P and Q, there does not seem to be any way to describe a
measuring process for P N Q; i.e., there is apparently no operational
definition of P N Q.

An obvious idea for measuring P N Q is to measure P and then Q, but
this will not correspond to measuring P N Q, and it is perhaps worthwhile
working out what actually happens in the conventional theory, i.e., when
(0,8) is [0(H), S(H)]. Suppose we measure P then Q and define the compound
measurement R to be one only if both P and Q are one, and zero otherwise.
(Here we are using the same letter for a question Q, which is a projection
in the Hilbert space H, and the corresponding laboratory measurement.)
Suppose the system is initially in a state given by the unit vector x.
Then the probability that P will be one is (Px,x). Given that P is omne,
the state after the measurement is given by the unit vector (Px)/HPxH.
Hence the probability that Q will be one, given that P was ome, is
(QPx,Px)/HPxHZ. Therefore the probability that R will be one is

(QPx,Px) (Px,x)/||Px||2 = (PQPx,x).

Clearly this probability is not independent of the order in which P and Q
are measured unless P and Q commute. Thus R cannot be a measurement cor-
responding to PN 6. Moreover, R, although it can be measured by an
operationally defined experiment, is not an observable. That is, there is
no question R in 0(H) corresponding to the measurement. If there were, we
would have (Rx,x) = (PQPx,x) for all x, which means R = PQP; but PQP is not
a projection unless P and Q commute.

The procedure of measuring P, then Q, then P, etc., can be carried out
indefinitely, at least as a Gedankenexperiment. The result is rather
interesting. Let R, be the measurement corresponding to measuring P, Q, 125
etc., with a total of n measurements. Then the probability that R, is one
turns out to be (PQP...QPx,x), with a total of 2n - 1 factors. But in the
strong operator topology, the sequence P, PQP, ... , approaches the limit
P N Q. Thus we do not have an operational procedure for measuring P N Q
but only approximations to one, and the approximation camnot be made uni-
form over all states ¢, because the convergence is only in the strong
topology. Moreover, the approximate measurements are not observables in
the conventional theory.

We might summarize the above discussion by saying that P 1 Q is not an
0perational concept but is close to being one. This is at least better
than the situation in regard to the sum of two observables. Nevertheless,
our own analysis to show that Q is a lattice will be based on the assump-
tion that the sum of any two bounded observables exists. It is interesting
to connect up the algebraic and quantum logic approaches in this way, and
also we feel that the sum axiom may be very useful at other points. Before
we give the sum axiom, it is appropriate to introduce another important
axiom, which fortunately does have a physical justification. It corresponds

2
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to the physical assumption that the measurement of a question repeated
immediately will give the same result.

Axiom 6. For every question Q, there exists a state ¢ such that my(Q) = 1.

This axiom lets one relate the spectrum of an observable to its mean
values. (Zierler22 has discussed this.) In fact, we have:

Proposition 8. Let A be an observable. Then AeSp(A), if and only if for
all ¢ > 0, there exists ¢ in S such that |m¢(A) - Al < e¢. Hence,

||lAll- = inf mg(A) all ¢eS;
llally = sup mg(a) all ¢eS;
llall = SUP|m¢(A)lall $eS.

The next axiom is perhaps the key to any complete development of
quantum mechanical axiomatics along algebraic lines.

Axiom 7. Let A and B be bounded observables. Then there exists a unique
observable C = A + B such that m¢(C) = m¢(A) + m¢(B) for all ¢eS.

This axiom is simple and widely accepted as being basic. There is,
however, no obvious physical justification for it. While characteristic
of the Jordan algebra approach to axiomatics, it may also be exploited in
studying the quantum logic. From Proposition 8, we immediately ge the
following result.

Proposition 9. Let A and B be bounded observables. Then
lla + Bll- = flall- + I8l
la + Bl = llally + lIBll+,

and
la+ 8l =<llal «+l&] .

This shows that the set of bounded observables is a normed vector space
over the real numbers. In fact, it satisfies most of Segal's axioms, the
only question being about completeness in the norm and continuity of the
squaring operation.

Now suppose that P and Q are questions, and let A=P +Q, R = X{z}(A).
By the above proposition, “AH_ =0, HAH+ =22 S8 Thusiivif m¢(A) = 2 we must
have m¢(R) = 1. From this we conclude that m¢(R) = 1 if and only if
my (P) = m¢(Q) = 1. This suggests that the question R is the greatest lower
bound for P and Q. We apparently cannot prove this by using only Axioms =7
so we introduce:

Aziom 8. Suppose that P and Q are questions such that my(P) = 1 implies
m¢(Q) — 1. Then P and Q commute.
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It follows immediately from this axiom that if m¢(P) = 1 implies
m¢(Q) = 1 for all states ¢, then P = Q. Thus we have, in effect, assumed
that the ordering of implication, which we discussed in connection with
the existence of P N Q, is identical to the ordering by mean values.
Zierler22 has shown that if the logic is a lattice, then Axiom 8 holds.
Here we go the other way, and using Axioms 6, 7, and 8, show that Q is a
lattice. Applying Axiom 8 to R = Ao (Pt Q), we see that R = P and
R=Q. Thus R is a lower bound for P and Q. On the other hand, if S =P
and S = Q, then m¢(S) = 1, implies m¢(P + Q) = 2, which implies m¢(R) =1,
so that S = R. Thus we have proved that every pair of questionms P,Q has a
greatest lower bound. Since Q is orthocomplemented, this means that Q is
a lattice and we have:

Theorem 4. Q is a weakly-modular orthocomplemented lattice.

Axiom 9. Q is separable; i.e., if {Q)} is a family of mutually orthogonal
nonzero questions, then {Q)\} is countable.

Theorem 5. Q is complete.

Proof. This follows from Axiom 9 and the fact that every countable
orthogonal family has an upper bound.

This is a good point at which to mention the question of super-—
selection rules. A superselection rule is essentially a nontrivial observ-
able which commutes with all observables. Thus we have superselection
rules if and only if there exist questions different from zero and one
which commute with all questions. An element which commutes with all
elements of an orthocomplemented lattice L is said to be in the center of L.

Theorem 6. Let L be a complete weakly-modular orthocomplemented lattice.
Then the center of L is a sublattice of L and is a complete Boolean algebra.

Proposition 10. Let E be an element in the center of an orthocomplemented
Tattice L. Assume that E is not equal to zero or ome. Then L is the direct
sum of [0,E] and [0,E'], where [0,E] is the lattice of questions Q such

that Q < E.

An orthocomplemented lattice L is said to be irreducible if it cannot

be written as the direct sum of two orthocomplemented lattices. From a
mathematician's point of view, it is natural to ask if the study of
arbitrary, complete, weakly-modular, orthocomplemented lattices can be
reduced to the study of the irreducible ones. One might hope to do this
by a procedure like von Neumann's direct integral decomposition ?f ri?gs
of operators. However, it is not known that such a procedure exists in
the lattice setting. The only case that can be handled at present is a

relatively trivial one.

For elements P and Q in a partially-ordered set, we say that P covers
Q if P > Q and there does not exist R with P > R > Q. P is an atom if P

covers 0. A lattice is atomic if every element is the join (perhaps

infinite) of atoms.

To discuss this case, we introduce some terminology.

14
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Theorem 7. ILet L be a complete weakly-modular, orthocomplemented lattice
whose center is atomic. Then L is a direct sum L = T @ Lj of irreducible
orthocomplemented lattices.

Corollary. If L is a complete, atomie, weakly-modular, orthocomplemented
lattice, then L is a direct sum of irreducible, atomic, orthocomplemented
lattices.

V. A REPRESENTATION THEOREM

The property that Q is atomic may be the essential difference between
[O(H), S(H)] and more general systems which might be of physical interest.
Naturally, it would be desirable to carry out more analysis without making
the assumption of atomicity. Unfortunately, there seems, at the moment,
to be no way to obtain a useful representation theorem for 05 or (0,iin ‘the
nonatomic case. One part of the difficulty is the lack of a theorem
analogous to Theorem 7, representing arbitrary Q in terms of irreducible
ones. However, even for irreducible Q, there are great problems. To see
this, one has only to consider the variety of weakly-closed Jordan algebras
of self-adjoint operators in Hilbert space. The set of projections in any
such algebra may be taken as a Q satisfying the axioms given so far.
Obviously, such variety works against our finding a representation theorem.
On the other hand, if the Jordan algebra is such that Q is atomic, then Q
is essentially the lattice of all closed subspaces. For these reasons, we
now introduce:

Axiom 10. Q is atomic.

In this form, the axiom appears nonphysical, but it does have a
physical interpretation. We could replace Axiom 10 by the following (non-
equivalent) axiom.

Axiom 10'. a) The state ¢ in Axiom 6, such that m¢(Q) = 1, may be chosen
as a pure state.*

b) If ¢ is a pure state, then there exists a question Q, such
that mw(Q) =1, if and only if ¢ = ¥.

The second half of this axiom is really an assertion that pure states
may be realized in the laboratory.

Proposition 11. Axiom 10' implies Axiom 10.

Now, because of Theorem 7, we may focus our attention on the irreduci-
ble Q. (It is easily verified that if Q is a direct sum Q=133 Qj, then
each Qj also satisfies our axioms.) Therefore we assume:

Axiom 11. Q is irreducible; i.e., there exist no nontrivial questions that

commute with all other questions.

. .
*A pure state is one that cannot be written as a convex combination of
other states.
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The natural mathematical question to ask at this point is, "What can
Q be?" It may be that the axioms given so far imply that Q is the lattice
of closed subspaces of some Hilbert space, although over what number field
is certainly left open. However, all we can do at the present time is in-
dicate how further axioms can be introduced to assure the desired conclusion.

The next axiom is a regularity assumption. To a mathematician, the
most regular lattices are those, such as Boolean algebras, in which the
distributive laws X U (YN Z) = XUY) N((XUZ) and X N (Y U Z) =
(XNY) U (XN2Z) hold. A weaker regularity assumption is that the modular
law holds; i.e., X = Z implies (X UY) NZ =X U (Y NZ) for all Y.
Birkhoff and von Neumann, in their original study of quantum logic,!
assumed that the modular law holds. On the other hand, the modular law
does not hold for Q(H). This was one of von Neumann's motivations for
studying rings of operators and continuous geometries, for there one finds
orthocomplemented lattices that are modular but not finite-dimensional in
the ordinary semse. So far, these lattices do not seem to be important in
quantum mechanics, but the question is very much an open one. Birkhoff?2
remarks that several concrete examples must be worked out before the
question of modularity or nonmodularity can hope to be resolved. 1In
particular, he mentions the sublattice of Q(H) generated by the character-
istic functions of position and momentum observables. This by itself is a
plausible model for many quantum mechanical problems; yet its properties
are not known.

The failure of the modular law for Q(H) does not by any means signify
that Q(H) is pathological. In fact, it is very close to being modular,
and many of the manipulations characteristic of modular lattices may be
applied when working with Q(H). The regularity law that does hold in Q(H)
is that of semimodularity. This is defined by using the notion of a
modular pair, which is a pair of elements Y,Z in a lattice such that, when-
ever X = Z, we have X UY) NZ=XU X N 7). A lattice is semimodular
if the relation of being a modular pair is symmetric. We can similarly
define the terms d-modular pair (short for dual-modular pair) and dual
semimodular. In an orthocomplemented lattice, which is, of course, self-
dual, semimodularity and dual semimodularity are equivalent. The physical
meaning of semimodularity, if it has one at all, is not clear. However,
Q(H) is semimodular, and in our situation, semimodularity is equivalent to
some simpler conditions.

Theorem 8. Let L be an atomic orthocomplemented lattice. Then the fol-
lowing statements about L are equivalent:

1) L is semimodular.

2) If P and Q cover P N Q, then P U Q covers P and Q.

3) If P is an atom, and P N Q = 0, then P U Q covers Q.
Purther, if L is weakly-modular, condition 2) may be replaced by:

2') If P and Q are distinct atoms, then P U Q covers P and Q.



Mﬁi%rﬁﬁm 5t savo dsendais km@
~gk wt sifly TmsssTy 43 18 b sy ow Lie TSVl
~olsilonen Bexissb sdy eveses 53 besahordmk ﬁfﬂﬁ”

IRy .msloltemedisa & of seigmwees TatTsivgsy & &k 4
oy datde gl  esideile onuints se dova  osod? 338 el
=B NTee G TaUD -8 EES
wedubbm s tedl 2f moldemisien vilyelugsy cedews A .biod (8 1
N AlE 20l (A5 U L= SN LT U X) sstiget 38 X ol il
ionigel musmanp-te vhuse [eulgies visd: ok .MM’ s Yiod
el sefubis s ‘u:rnrf vaidzs %83 90 - cabiod wal zelvben a@s Lam
tol mnuitnvitos &' nomeos nov 36 san edw 2147 JOUD =3 Bigl i
WBREY sao swedd rol estidemdey wuopaticen bas aroiptage o wﬁ‘s
To3on fo¢ ssiebom-eys Jsid seskyssl :
al m;m ad ws 58 oo ob meaiiis] sasd: Y61 08 Joscae YIN
Skl il sac aaqr ga Astim viev.-al aclissgp ady Jed  ealestoen
83 935 3I8d Jo0- bediow 9d Teum wslqmexs a3srsnos foisves Saldy
1 oasvlosis Bd o syl e yityslobosson 3o viisalsbos 36
-wadpersdy sdi vl het *AISnsg WD 26 o 1ol due 943 saolanen sd o
A aX Meark wd widl  ealdsvisede mwignmms Sasopolslsog Yo sady
BddEywgory Adl Sy jassldong featnudssm musasep woas voi Ishow

~ owoml. 3

SoRME Y08 vd
Wieiohom golad o3 ¢
o Tam sankide! cnlebes

R st blod sest 3sd). wel b
I a Yo aatien 45 soken w8
£ smndw 18k dowa 33l3isl v g0
RO ImeS &b antses
. vivsiznls a8 aW - . sixssamve
f. Snah bes {ulsg welnl
’ =iise . pav0d Yo .38

szl inding & fr(}ﬁ

asw ol Yo

e lrslvbonluse 3o 28
ieg & 2k doldw e
NYY I suad s I B
tsd Yo nolisley
s sndsbom-b amyss ady
- we lqeosoize ge-al e
Sevadeydg 34T 30 #6 giiralobomiass lsuh Los yilialobomisss

I8vsEal - . pasl { s oo and 31 R gvdlzsipteatans 30 B
o) Insleviops sl vlimilsbonirme ,n0l3scite 1w ol -bas lhi

isub

wemeds doed #‘Q& :
ok} aodd  sdnnme




17

Let us assume, with the rather feeble justification that this is a
weak regularity hypothesis:

Axiom 12. The lattice Q is semimodular.

Now we can get a useful representation theorem. It involves the
notion of what we call a semi-inner product space. Let R be a division
ring, i.e., a not-necessarily commutative field, and let V be a left vector
space over R; that is, in V we have addition and multiplication on the left
by scalars from R. A semibilinear functional B on V is a map (Caonp) == B?;T;)
from V x V into R such that:

1) For all x;, Xy, y1, and yp in V and o in R,
B(ax; + Xp,y] + yp) = aB(x1,y1) + oB(x1,yp) + B(xp,y1) + B(x2,y2)3
and
2) There exists an antiautomorphism 6 of R such that, for all x and y
fmSVeand=asin R
B(x,0y) = B(x,y)6(a).
It is important to note that 6 is an antiautomorphism, i.e., 8(aB) =

9(B)6(a), and that the multiplication of B(x,y) by 68(a) is on the right.
0f course, this does not matter if the field is commutative.

We say that a semibilinear functional B is a semi-inner product if it
satisfies the following conditions:

1) The antiautomorphism 6 associated with B is involutory.

2) B(x,y) = 8[B(y,x)].

3) B(x,x) = 0 implies x = O.
4) TFor some X, Blx,x) = 1.

We call a left vector space V over R, together with a semi-inner product,

a semi-inner product space. 1f X is a subspace of such a space, we let X*
denote the subspace of all y such that B(x,y) = 0 for all x in X. We say
that X is closed if X = x1L. Note that in an ordinary innmer product space,
this is not necessarily the same as topological closure.

Theorem 9. Let V be a semi-inner product space. Then the lattice L(V) of
all closed subspaces of V is a complete, irreducible, atomic, semimodular,
orthocomplemented lattice.

Theorem 10. Let L be a complete, atomic, irreducible, semimodular, ortho-
complemented lattice of dimension at least four (i.e., there exist at least
four mutually orthogonal atoms). Then there exists a semi-inner product
space V such that L is orthoisomorphic to L(V).

This representation theorem (from MacLaren?") was obtained by extending
a combination of several older results. In particular, the connection be-
tween a semibilinear form and orthocomplementation in finite-dimensional
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vector spaces was established by Birkhoff and von Neumann.! Piron!? has
obtained a representation theorem in terms of subspaces of a projective
geometry. Zierler22 considered (see below) the special case where the
lattice under a finite-dimensional element was the lattice of subspaces of
a real or complex vector space, and then showed that the whole of Q was a
lattice of subspaces of an inner product space.

The representation theorem certainly brings us close to the conclusion
that Q is Q(H) for either a real, complex, or quaternionic Hilbert space H;
and this is one of the things that make the quantum logic approach attrac-
tive. However, certain highly nontrivial problems remain to be solved.
For one thing, we must show that V, assuming it is actually an inner product
space, is complete in the usual norm topology. It may well be that this
can be handled by a further innocuous axiom, or, even better, completeness
may follow from the axioms we already have. In particular, the following
conjecture may be true.

Conjecture. Let V be an imner product space, and let L(V) be the lattice
of all subspaces X such that X = ¥, Then, if L(V) is weakly-modular, V
is complete in the usual norm topology.

A second, perhaps more difficult, problem is to prove that the division
ring R is actually the real, complex, or quaternionic numbers.* The prob-
lem appears to be more serious. There are many possibilities besides the
real, complex, or quaternionic numbers which yield lattices satisfying most
of our axioms. It is the author's opinion, however, that the axioms given
above imply that R is the field of real, complex, or quaternionic numbers.
Axioms 6 and 7 (existence of sufficiently many states and of sums of bounded
observables) seem important here.

VI. THE FINAL AXIOMS

To complete the set of axioms, such as it is, let us follow Zierler
and introduce axioms that will characterize the division ring appearing in
the representation theorem.

Jxiom 13.%* Let E be a nonzero element of finite dimension in Q. Then the
set of all atoms P such that P = E is compact in the norm topology.

Axiom 14. For some finite E in Q and real interval I, there exists a con-
Finuous nonconstant fumetion t > Q¢ from 1 to the lattice [0,E].

*Moreover, one must then show that in the case of the complex numbers, the
automorphism 6 associated with the semi-inner p?oduct may be taken as Fhe
usual conjugation automorphism. Fortunately, Zierler has.sh?wn how tyls
can be done. In his original paper,22 there Vas some amb}gulty on this
point; but he clears this up in Ref. 23. It is worth noting that'tbere
exists an orthocomplementation of the lattice of subspaces of a finite-
dimensional complex vector space which is not equlvalgnt to the normal
one (see MacLaren?"). The two orthocomplemenged léttlces are not ortho-
isomorphic, even though as lattices they are identical.

*%7jerler (Ref. 22, p. 1162) assumes that, for each n = dim [E], the set of
questions in [0,E] of dimension n is compact. However, that follows
easily from the axiom given here.
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Now Zierler's results can be combined with Theorem 10 to conclude:

Theorem 11. If Q contains at least four orthogonal atoms, then Q is iso-
morphic to the lattice of all closed (in the sense that X = XLL) subspaces
of an inner product space H over the real, complex, or quaternionic numbers.

We leave it to the reader to decide whether an additional axiom is
needed to insure that H is complete, and also what axioms should be intro-
duced to guarantee that the division ring is the complex numbers, rather
than the reals or quaternions.

All the above discussion has been about the problem of proving that 0
is O(H), or equivalently that Q is the lattice Q(H) of all closed subspaces
of H; little has been said about S. However, once it is known that Q is
Q(H), the exact nature of S is easily deduced. Gleason has shown that
every measure on Q(H) is in S(H). [S(H) was defined in the Introduction as
the measures coming from trace operators.] Thus, every measure m on Q(H)
may be written as a convex combination, m = Zojmj, where each mj is a
measure of the form P » (Px,x), X a unit vector defining mj. Now it fol-
lows immediately from Axiom 6 that every measure m of the form m(P) = (Px,x)
is in S*. Thus making the normal assumption that S*, or equivalently S, is
closed under countable convex combinations, we conclude that S = S(H). For
completeness, let us include that last axiom:

Axiom 15. The set of states S is closed under the taking of countable
convex combinations.

This concludes our development of the axioms, but it may be worth
making a few remarks about Axioms 13 and 14. Axiom 14 is relatively in-
nocuous. It is almost physical; and, moreover, it can probably be dropped
entirely with only moderate effort. It is only used to prove that the
coordinatizing division ring R is not totally disconnected in the topology
that it inherits from Q.

Axiom 13, which is used to show that the coordinatizing division ring
is locally compact, is more interesting. Although there is no apparent
physical meaning to this axiom, there is a connection between it‘and the
Jordan algebra approach. Consider the set A(E) of observables with spectral
decompositions IA;F;, Fy < E all i. If the whole algebra A of bounded ob-
servables is a Jordan algebra,+ then A(E) will also be a Jordaq a}gebra.
Suppose that A(E) has a finite basis as a vector space. Then it is easy to
verify that Axiom 13 holds. On the other hand, one can prove from Axiom 13
that A(E) is a locally compact normed vector space, and hen?e.that AfE) has
a finite basis. Thus Axiom 13 corresponds roughly to the finite ba?ls
condition for the Jordan algebra A(E). Of cqurse, given that A(E) is a
Jordan algebra, the nature of the division ring R could be d?duceq fr?m the
structure theorems on Jordan algebras in Ref. 8. Moreover, in this situa-

tion, it seems clear that Axiom 14 can be dropped.

tThis means assuming the distributive law for the Jordan product in addi-
tion to our other axioms.
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